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ProloguePrologue



Prologue
We'll discuss the differences between machine learning and econometrics

What can each camp learn from the other?

Today we'll discuss the basics of machine learning

What is the intuition?
What are the goals? How do we measure accuracy?
What is the bias-variance tradeoff?
How do we tune models?
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Attribution
These slides are largely adapted from Tyler Ransom's graduate course at the University of Oklahoma

He gets more into the weeds than I do here

Give it a look if you think this stuff is cool!
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https://raw.githack.com/tyleransom/DScourseS23/master/LectureNotes/19-Intro-ML/19slides.html#1
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What is Machine Learning?
ML: Allowing computers to learn for themselves without being explicitly programmed

USPS: Computers read handwritten addresses and sort mail accordingly
Google: AlphaGo, AlphaZero (computers that are world-class chess, go players)
Apple/Amazon/Microsoft: Siri, Alexa, Cortana voice assistants understand speech
Facebook: automatically finds and tags faces in a photo

In each of the above examples, the machine is "learning" to do something only humans had previously
been able to do

Put differently, the machine was not programmed to read numbers or recognize voices -- it was given a
bunch of examples of numbers and human voices and came up with a way to predict what's a number
or a voice and what isn't
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Map of Machine Learning

Map of Machine Learning from Motaz Saad. We'll do trees, forests, and penalization!
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https://mksaad.wordpress.com/2019/12/07/the-map-of-the-machine-learning-world/


Artificial intelligence vs. Machine
Learning
AI: Constructing machines (robots, computers) to think and act like human beings

Thus, machine learning is a (large) subset of AI

Map of AI to Machine Learning from Motaz Saad.
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https://mksaad.wordpress.com/2019/12/07/the-map-of-the-machine-learning-world/


Econometrics vs. Machine LearningEconometrics vs. Machine Learning



Econometrics vs. Machine Learning
Econometrics is all about understanding the causal relationship between a policy variable  and
an outcome 

Machine Learning is all about maximizing out-of-sample prediction

Econometrics is all about finding 

Machine Learning is all about finding 

x

y

β̂

ŷ
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Important questions
How we can combine the tools of economic theory, econometrics, and ML to build better empirical
economic models?

Answers come from various lectures given by Susan Athey, who is an economics professor at
Stanford and who is the foremost expert in these matters

A nice podcast on the topic is available here (11/16/2012 episode)

In what ways do econometrics and machine learning differ?

It helps to lay out exactly what the strengths of limitations of each approach is, so that we
know what the comparative advantage is of each
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https://www.gsb.stanford.edu/faculty-research/faculty/susan-athey
https://itunes.apple.com/us/podcast/uw-cse-colloquia-university-washington-computer-science/id431501588?mt=2&i=1000124767619


Goal of econometrics
The goal of econometrics is to make counterfactual predictions:

What would happen to a child's test scores if she were assigned to a smaller class?

What would happen to a child's lifetime earnings if she were moved to a higher mobility
neighborhood?

What would happen to labor supply if the earned income tax credit were increased?

Knowing the counterfactual requires being able to measure a causal effect

i.e. "the goal of econometrics is to find " where here we mean  to be the causal impact of
 on 

Being able to measure a causal effect requires making assumptions. That's what economics is all
about!

β̂ β̂

X y
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Primary statistical concern of 'metrics
A primary statistical concern of econometrics is sampling error

In other words, the goal is to quantify the uncertainty around  due to randomness in the
sampling of the population

This is the infamous standard error that econometricians obsess over

One wild thing about econometrics is that there is (almost) no formal attention paid to model
misspecification error!

The functional form and specification of the model are assumed to be 100% correct, such that
the only error that remains is the sampling error

Sampling error is what generates the standard errors that we use in our hypothesis testing

β̂
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Goal of machine learning
In contrast, the goal of machine learning is to come up with the best possible out-of-sample
prediction

Or the primary concern of machine learning being 

To get this prediction, a lot of effort is spent on validating many possible models

However, if the world changes in a fundamental way, the trained predictive model is no longer
useful!

ŷ
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Primary statistical concern of ML
The primary statistical concern of machine learning is model misspecification error

The goal is to make sure that the best prediction is had by tuning and validating many different
kinds of models

This is what machine learning practitioners obsess about

Concepts:

regularization (i.e. penalizing overly complex models)
prediction accuracy (i.e. how well does the model predict out-of-sample)
the bias-variance tradeoff (i.e. the tradeoff between overly simple and overly complex
models)
cross-validation (i.e. tuning parameters to maximize out-of-sample fit)
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Example: predicting fit
Should I fit a straight line or curve through this bin scatter of age and earnings?
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Example: Compare fits
Seems like we probably want some sort of curve
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'metrics and ML can learn from each
other

Econometrics Machine Learning
Less emphasis on standard errors, more
emphasis on model misspecification and model
selection

Find ways to obtain causal estimates from
observational data that still predict well out-of-
sample

Do more model validation (e.g. Delavande and
Zafar, 2019)

Figure out how to implement methods like
instrumental variables in machine learning
models

Use more types of data (e.g. better click prediction leveraging quasi-
experimental or experimental data)

Test assumptions that come baked-in to models

(Each cell is what the one field can learn from the other)
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https://www.journals.uchicago.edu/doi/abs/10.1086/701808
https://www.journals.uchicago.edu/doi/abs/10.1086/701808


Machine learning methods in economics
Decision trees: which variables give me the best prediction?

Random Forests: (roughly) aggregate your trees to get better predictions
Example: Kleinberg et al. (2018) use trees + qausirandom assignment of judges to predict
optimal bail decisions that minimize crime to assess "mistakes" by judges

Causal Forests: split the sample to see how varied the causal effects of a treatment are?

Extension of random forests to causal inference
Sometimes leverages bootstrapping
Example: Jon Davis and Sara Heller (2017) estimate how treatment effects vary for at-risk
youth in a summer job program

Regression penalization: which of all these variables do I put in my regression?

LASSO: penalizes the sum of the absolute values of coefficients in model
Ridge: penalizes the sum of the squared values of coefficients in model
Example: Derenoncourt (2022) predicts historical Black migration patterns to estimate the
effect of the Great Migration on upward mobility in black communities
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https://academic.oup.com/qje/article-abstract/133/1/237/4095198
https://www.aeaweb.org/articles?id=10.1257/aer.p20171000
https://pubs.aeaweb.org/doi/pdfplus/10.1257/aer.20200002
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Objective of Machine Learning
The fundamental objective is to maximize out-of-sample "fit"

But how is this possible given that -- by definition -- we don't see what's not in our sample?

Solution: Pick functions that predict well in-sample, but penalize them from being too complex

Overfitting means you focused too much on in-sample fit and get poor out-of-sample fit

Regularization is the tool by which in-sample fit is penalized, i.e. regularization prevents overfitting

22 / 40



Not the objective of ML

Taken from the always poignant XKCD. Sometimes it's hard to tell what's going on inside the black box!
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https://xkcd.com/1838/


Elements of Machine Learning
1. Loss function (measures how well a particular algorithm predicts in- or out-of-sample)
2. Algorithm (a way to generate prediction rules in-sample that can generate to out-of-sample)
3. Training data (the sample on which the algorithm estimates)
4. Validation data (the sample on which algorithm tuning occurs)
5. Test data (the "out-of-sample" data which is used to measure predictive power on unseen cases)

The algorithm typically comes with tuning parameters which are ways to regularize the in-sample fit

Cross-validation is how tuning parameters are chosen
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Typical ML workflow
1. Split a dataset into a train and test set or training, validation, and test set

Do not touch the "test" or "holdout" data until the very end of analysis

2. Train a model on the training set

3. Validate the model on the validation set based by measuring the prediction accuracy

Ideally you find ways to cross-validate

4. Tune model parameters to minimize some "loss" function on the validation set

Could be to minimize out-of-sample MSE, in-sample MSE, or a mix

5. Take the best model and make predictions using the test data

Lots of little deviations to the above!
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Example
Suppose you want to predict a person's earnings using Current Population Survey data

You have a large number of relevant variables

What would you do?

You would also want to have a model that you can estimate

You probably want to have a model that can detect non-linear relationships (like a USPS
handwriting reader)

And a model that will predict well out-of-sample

## # A tibble: 5 × 12
##      id data_id treat   age  educ black  hisp  marr nodegree   re74   re75
##   <int> <chr>   <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>    <dbl>  <dbl>  <dbl>
## 1     1 CPS1        0    45    11     0     0     1        1 21517. 25244.
## 2     2 CPS1        0    21    14     0     0     0        0  3176.  5853.
## 3     3 CPS1        0    38    12     0     0     1        0 23039. 25131.
## 4     4 CPS1        0    48     6     0     0     1        1 24994. 25244.
## 5     5 CPS1        0    18     8     0     0     1        1  1669. 10728.
## # ℹ 1 more variable: re78 <dbl>
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Test vs. Train
set.seed(1)
cps_split <- rsample::initial_split(cps_mixtape, prop = 0.5)
cps_train <- rsample::training(cps_split)
cps_test <- rsample::testing(cps_split)

Above I split the sample into a training and test set using syntax from rsample

The training set is used to estimate the model

The test set is used to see how well the model predicts out-of-sample

All these functions do is create two random subsamples and reskins them
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Option 1: separate dummies for people
dummies <- feols(re74 ~ 0 | id, data = cps_train)
cps_train<-mutate(cps_train,
    pred_re74_fe = predict(dummies, newdata = cps_train), # predict earnings
    resid_re74_fe= residuals(dummies, newdata = cps_train)) %>% 
  dplyr::select(id,educ,re74,pred_re74_fe,resid_re74_fe) 
head(cps_train)

## # A tibble: 6 × 5
##      id  educ   re74 pred_re74_fe resid_re74_fe
##   <int> <dbl>  <dbl>        <dbl>         <dbl>
## 1  1017    14     0            0              0
## 2  8004    12 25862.       25862.             0
## 3  4775    12 25849.       25849.             0
## 4 10369    17 21552.       21552.             0
## 5 13218     6     0            0              0
## 6  9725    12 25862.       25862.             0

What you get is a separate adulthood earnings prediction for every single person
Perfect in-sample prediction!
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Option 1: new person from test?
cps_test <- mutate(cps_test,
    pred_re74_fe=predict(dummies,newdata=cps_test),
    resid_re74_fe=re74-pred_re74_fe) %>%
  dplyr::select(id,educ,re74,pred_re74_fe,resid_re74_fe) 
head(cps_test,5)

## # A tibble: 5 × 5
##      id  educ   re74 pred_re74_fe resid_re74_fe
##   <int> <dbl>  <dbl>        <dbl>         <dbl>
## 1     1    11 21517.           NA            NA
## 2     2    14  3176.           NA            NA
## 3     4     6 24994.           NA            NA
## 4     5     8  1669.           NA            NA
## 5     6    11 16366.           NA            NA

But what to do when given a new person that's not in the sample?

This prediction will have horrible out-of-sample fit, even though it has perfect in-sample fit

This is a classic case of overfitting

We say that this predictionton has high variance (i.e. the algorithm thinks random noise is
something that is important to the model)
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Option 2: as a function of education
Let's use education (highest grade completed) as a predictor

education <- feols(re74 ~ educ, data = cps_train)
cps_train <- mutate(cps_train,
    pred_re74_educ = predict(education, newdata = cps_train),
    resid_re75_educ=residuals(education,newdata = cps_train)) %>% 
  dplyr::select(id,re74,educ,pred_re74_fe,pred_re74_educ) 
head(cps_train)

## # A tibble: 6 × 5
##      id   re74  educ pred_re74_fe pred_re74_educ
##   <int>  <dbl> <dbl>        <dbl>          <dbl>
## 1  1017     0     14           0          14718.
## 2  8004 25862.    12       25862.         14031.
## 3  4775 25849.    12       25849.         14031.
## 4 10369 21552.    17       21552.         15749.
## 5 13218     0      6           0          11969.
## 6  9725 25862.    12       25862.         14031.

The in sample fit is pretty bad -- it returns the average earnings for a person of a given education
level
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Option 2: add a new person
But if we add a new person, then it can make a prediction, just inaccurately

cps_test <- mutate(cps_test,
    pred_re74_educ = predict(education, newdata = cps_test),
      resid_re75_educ=residuals(education,newdata = cps_test)) %>% 
  dplyr::select(id,educ,re74,educ,pred_re74_fe,pred_re74_educ) 
head(cps_test)

## # A tibble: 6 × 5
##      id  educ   re74 pred_re74_fe pred_re74_educ
##   <int> <dbl>  <dbl>        <dbl>          <dbl>
## 1     1    11 21517.           NA         13687.
## 2     2    14  3176.           NA         14718.
## 3     4     6 24994.           NA         11969.
## 4     5     8  1669.           NA         12656.
## 5     6    11 16366.           NA         13687.
## 6    10    12 25862.           NA         14031.

Out of sample it can return a value, but it is way off

This algorithm will result in underfitting because the functional form and variables used for
prediction are too simple

We say that this prediction has high bias (i.e. the algorithm does not think enough variation is
important to the model)
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Bias-variance tradeoff
The bias-variance tradeoff is between a model that is too simple and a model that is too complex

Too complex models will "hallucinate" random noise as being important (high variance)
Too simple models will not generalize to new datasets/samples (high bias)
The way to optimally trade off bias and variance is via regularization

Taken from Hastie, Tibshirani, and Friedman (2009) Elements of Statistical Learning (p. 194)
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Prediction accuracy of continuous 

where  is the sample size

bind_rows(list('In/Train'=cps_train, 'Out/Test'=cps_test),.id='sample') %>%
  group_by(sample) %>%
  summarise(MSE Fixed Effect = mean((re74 - pred_re74_fe)^2),
    MSE Education = mean((re74 - pred_re74_educ)^2),
    Root MSE Fixed Effect = sqrt(MSE Fixed Effect),
    Root MSE Education = sqrt(MSE Education)) %>%
  knitr::kable(digits=2,format.args=list(big.mark=","))

sample MSE Fixed Effect MSE Education Root MSE Fixed Effect Root MSE Education
In/Train 0 91,084,172 0 9,543.80
Out/Test NA 90,494,387 NA 9,512.85

y

Mean Squared Error (MSE) = ∑
i

(yi − ŷ i)
2

Root Mean Squared Error (RMSE) = √ ∑
i

(yi − ŷ i)
2

Mean Absolute Error (MAE) = ∑
i

|yi − ŷ i|

1

N

1

N

1

N

N

See end of slides for prediction with a binary (y) . 33 / 40



Cross validation
How do we decide what level of complexity our algorithm should be, especially when we can't see out-
of-sample?

The answer is we choose values of the tuning parameters that maximize out-of-sample prediction

For example:

Decision Trees: the maximum depth of the tree or the min. number of observations within leaves

Random Forests: the same as decision trees plus the number of trees (bootstrap samples) in the
forest

Regression penalization: the  that comes in front of LASSO, Ridge, and elastic net regularization

There are many, many more!

λ

34 / 40



Splitting the sample
To peform cross-validation, one needs to split the sample. There are differing opinions:

Camp A ("Holdout")

1. Training data (~70%)
2. Test ("holdout") data (~30%)

Camp B ("Cross-validation")

1. Training data (~60%)
2. Validation data (~20%)
3. Test data (~20%)

Sample is split randomly to how it was generated (e.g. if it's panel data, sample units, not observations)

It is ideal to follow the "Cross-validation" camp, but in cases where you don't have many observations
(training examples), you may have to go the "Holdout" route.
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Test/train/hold-out in Kleinberg et al.

This shows the way the New York City data were randomly partitioned to do ML predictions of optimal
bail decisions using data of judicial decisions in New York City. Source: Kleinberg et al. (2019) "Human
Decisions and Machine Predictions"
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k-fold cross-validation
To avoid overfitting one particular sample, it is usually better to do the cross validation multiple
times.

To do so, we take the 80% training-plus-validation sample and randomly divide it into the 60/20
components k number of times. Typically k is between 3 and 10. (See graphic below)
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Next lecture: Decision Trees and JudicialNext lecture: Decision Trees and Judicial
DecisionsDecisions



Prediction accuracy of binary 
The confusion matrix which compares how often  and  align (i.e. for what fraction of cases 
when )

0 1
0 True negative False positive
1 False negative True positive

Where are Type I and Type II errors in a confusion matrix?

y

y ŷ ŷ = 0

y = 0

ŷ

y
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Prediction accuracy of binary 
The confusion matrix which compares how often  and  align (i.e. for what fraction of cases 
when )

0 1
0 True negative False positive
1 False negative True positive

Where are Type I and Type II errors in a confusion matrix?

Type I error: false positive (i.e.  when )
Type II error: false negative (i.e.  when )

The three most commonly used quantities that are computed from the confusion matrix are:

1. sensitivity or recall: fraction of  have  ? (What is the true positive rate?)
2. specificity: fraction of  have  ? (What is the true negative rate?)
3. precision: fraction of  have  ? (What is the rate at which positive predictions are true?)

The goal is to trade off Type I and Type II errors in classification1

y

y ŷ ŷ = 0

y = 0

ŷ

y

ŷ = 1 y = 0

ŷ = 0 y = 1

y = 1 ŷ = 1

y = 0 ŷ = 0

ŷ = 1 y = 1

1 The most common way to quantify this tradeoff is (F1)  score. Check Tyler Ransom's slides for more on different metrics in
the confusion matrix. 39 / 40



Why use the confusion matrix?
We do not want to "game" our accuracy measure by always predicting "negative" (or always
predicting "positive")

Consider the case of classifying emails as "spam" or "ham"

There are few "spam" messages relative to "ham" messages

If only 1% of messages are spam, we don't want to say an algorithm is superior if it always

predicts "ham" correctly, but does not pin down the 1% of spam2

2 The F1 measure attempts to quantify the tradeoff between Type I and Type II errors (false negatives and false positives) that
would be rampant if we were to always predict "ham" in the email example. 40 / 40


