
Data Science for Economists
Lecture 6a: Web Data in Research

Kyle Coombs (he/him/his)
Bates College | EC/DCS 368

https://github.com/big-data-and-economics

Table of contents
1. Prologue

2. Worldwide Web of Data

3. Examples of scraping in economics research

4. Access methods

Click and Download
Server-side scraping
Client-side scraping

5. Ethics of web scraping

2 / 53

ProloguePrologue

Prologue
We've spent the first month of this class on learning:

empirical organization skills ("Clean Code"),
basics of R
basics of data wrangling and tidy data

Now we're going to tackle data acquisition via scraping

Essentially, we're going to learn how to get data from the web

As context, everything I am showing you today assumes you've:

1. Found data on the web you want
2. Found the relevant way to access it (APIs vs. CSS)
3. Know the specifics needed to access the data (e.g. the name of a series, have an API key, the

rough HTML structure)

These data are usually messy in one way or another, so it'll give you something to tidy

Extended demos for this lecture are available in WEB APIs and web Scraping

4 / 53

https://raw.githack.com/big-data-and-economics/big-data-class-materials/main/lectures/07-web-apis/07-web-apis.html
https://raw.githack.com/big-data-and-economics/big-data-class-materials/main/lectures/06-web-css/06-web-css.html

Plan for today
What is scraping?

Contrast Client-side and Server-side scraping

Examples of scraping in economics research

Ethical considerations

Learn by doing with APIs (CSS will happen later -- potentially end of semester)

5 / 53

Attribution
These slides take inspiration from the following sources:

Nathan Schiff's web data lecture

Andrew MacDonald's slides

Jenny Bryan's textbook

Grant McDermott's notes on CSS and APIs

James Densmore's stance on ethics

6 / 53

https://nathanschiff.com/wp-content/uploads/2017/02/web_data_lecture.pdf
https://stat545.com/supporting-docs/webdata01_slides.html#1
https://stat545.com/web-data-slides.html
https://raw.githack.com/uo-ec607/lectures/master/06-web-css/06-web-css.html
https://raw.githack.com/uo-ec607/lectures/master/07-web-apis/07-web-apis.html
https://towardsdatascience.com/ethics-in-web-scraping-b96b18136f01

Worldwide Web of DataWorldwide Web of Data

Worldwide Web of Data
Every website you visit is packed with data

Every app on your phone is packed with data and taking data from you

Guess what?

These data often measure hard to measure things
These data are often public (at some level of aggregation/anonymity)
These data are often not easily accessibe and not tidy
Samples might be biased (have to navigate that)
This is legal (usually) and ethical (usually)

Guess what? All this makes these data (and knowing how to access it) valuable

It also makes this a hard skill to pick up

8 / 53

Examples of scraping in economicsExamples of scraping in economics
researchresearch

What cool things can you do with web
data?

Can anyone think of examples of web data being used in economics research?

10 / 53

Measuring hard to measure things
Imagine you survey a ton of people about their beliefs that a candidate is unfit to be president
because of their race

Due to social desirability bias, you get a lot of "I don't know" or "I don't think that"

There are lots of creative survey methods to get at this, but is there some way to measure this
without asking people?

Say, why not find out the frequency that people search Google for racial epithets in connection to
the candidate?

Guess what? Stephens-Davidowitz (2014) did just that

Finds racial animus cost Barack Obama 4 percentage points in the 2008 election (equivalent
of a home-state advantage)
Google search term data yield effects that are 1.5 to 3 times larger than survey estimates of
racial animus

for geographical area (state, county, etc.)

Racially Charged Search Ratej = []
j,2004−2007

Google searches including the word "Word 1 (s)"

Total Google searches

j

11 / 53

Racial Animus Map

Map of media markets by racially charged search rate from 2004 to 2007. The darker red, the more
racially charged. 12 / 53

Election performance

Obama underperformed Kerry in areas with more racially charged search rates.

13 / 53

Other uses
"Billion prices project" (Cavallo and Rigobon 2015) : collect prices from online retailers to look at
macro price changes

Davis and Dingell (2016): use Yelp to explore racial segregation in consumption

Halket and Pginatti (2015): scrape Craiglists to look at housing markets

Wu (2018): undergraduate hacked into online economics job market forum to look at toxic
language and biases in the academic economics against women

Glaeser (2018) uses Yelp data to quantify how neighborhood business activity changes as areas
gentrify (Student presentation)

Tons leverage eBay, Alibaba, etc. to look at all kinds of commercial activity

Edelman B (2012) gives an overview of using internet data for economic research

14 / 53

Access methodsAccess methods

Access methods
There are three ways to data off the web:

1. click-and-download on the internet as a "flat" file, like a CSV or Excel file

What you're used to

2. Client-side websites contain an empty template that _request data from a server and then fills in
the template with the data

The request is sent to an API (application programming interface) endpoint
Technically you can just source right from the API endpoint (if you can find it) and skip the
website altogether
I consider this a form of scraping
Key concepts: APIs, API endpoints

3. Server-side websites that sends HTML and JavaScript to your browser, which then renders the page

People often call this "scraping"
All the data is there, but not in a tidy format
Key concepts: CSS, Xpath, HTML

Key takeaway: if there's a structure to how the data is presented, you can exploit it to get the data

16 / 53

Click and Download
You've all seen this approach before

You go to a website, click a link, and download a file

Sometimes you need to login first, but if not you can automate this with R's download.file()
function

Below will download the Occupational Employment and Wage Statistics (OEWS) data for
Massachusetts in 2021 from the BLS

download.file("https:////w.bls.gov/oes/special.requests/oesm21ma.zip", "oesm21ma.zip")

17 / 53

Client-side scraping
The website contains an empty template of HTML and CSS.

E.g. It might contain a “skeleton” table without any values.
However, when we actually visit the page URL, our browser sends a request to the host server.
If everything is okay (e.g. our request is valid), then the server sends a response script, which our
browser executes and uses to populate the HTML template with the specific information that we
want.
Webscraping challenges: Finding the “API endpoints” can be tricky, since these are sometimes
hidden from view.
Key concepts: APIs, API endpoints

18 / 53

APIs
APIs are a collection of rules/methods that allow one software application to interact with another

Examples include:

Web servers and web browsers
R libraries and R clients
Databases and R clients
Git and GitHub and so on

19 / 53

Key API concepts
Server: A powerful computer that runs an API.
Client: A program that exchanges data with a server through an API.
Protocol: The “etiquette” underlying how computers talk to each other (e.g. HTTP).
Methods: The “verbs” that clients use to talk with a server. The main one that we’ll be using is GET
(i.e. ask a server to retrieve information), but other common methods are POST, PUT and DELETE.
Requests: What the client asks of the server (see Methods above).

Response: The server’s response. This includes a Status Code (e.g. “404” if not found, or “200” if
successful), a Header (i.e. meta-information about the reponse), and a Body (i.e the actual content
that we’re interested in).

Not covered? Explicit directions for each API we cover today

Instead, we're covering the nuts and bolts so you can figure out how to use any API

20 / 53

API Endponts
Web APIs have a URL called an API Endpoint that you can use to access view the data in your web
browser

Except instead of rendering a beautifully-formatted webpage, the server sends back a ton of messy
text!

Either a JSON (JavaScript object notation) or XML (eXtensible Markup Language) file

It'd be pretty overwhelming to learn how to navigate these new language syntaxes

Guess what? R has packages to help you with that

jsonlite for JSON
xml2 for XML

Today we're going to work through a few of these

That means the hardest parts are:

Finding the API endpoint
Understanding the rules
Identify the words you need to use to get the data you want

To be clear, that's all still tricky! 21 / 53

You've likely used FRED before

Source: U.S. Bureau of Economic Analysis via FRED®

Customize | Download Data | FRED - Economic Data from the St. Louis Fed

B
ill

io
n

s
o

f
C

h
ai

n
ed

 2
01

7
D

o
lla

rs

1940 1960 1980 2000 2020

0

4,000

8,000

12,000

16,000

20,000

24,000

Real Gross National Product

Shaded areas indicate U.S. recessions.

22 / 53

https://fred.stlouisfed.org/graph/?g=yo2J
https://fred.stlouisfed.org/graph/fredgraph.xls?g=yo2J
https://fred.stlouisfed.org/
https://fredhelp.stlouisfed.org/fred/data/understanding-the-data/recession-bars/

Underneath is an API!
The endpoint is https://api.stlouisfed.org/fred/series/observations?
series_id=GNPCA&api_key=&file_type=json

Just sub an your API key and you're good to go

What's an API Key? It is a unique identifier that is used to authenticate access to the data

It's like a password, but it's not a password
It tracks who is using the API and how much they're using it
Fake example: asdfjaw523a3523414at43sad
FRED gives you one for free if you register an API key

23 / 53

https://api.stlouisfed.org/fred/series/observations?series_id=GNPCA&api_key=
https://api.stlouisfed.org/fred/series/observations?series_id=GNPCA&api_key=
https://research.stlouisfed.org/useraccount/apikey

FRED API Json

{"realtime_start":"2024-02-03","realtime_end":"2024-02-03","observation_start":"1600-01-01","observatio
[{"realtime_start":"2024-02-03","realtime_end":"2024-02-03","date":"1929-01-01","value":"1202.659"},
{"realtime_start":"2024-02-03","realtime_end":"2024-02-03","date":"1930-01-01","value":"1100.67"},
{"realtime_start":"2024-02-03","realtime_end":"2024-02-03","date":"1931-01-01","value":"1029.038"},
{"realtime_start":"2024-02-03","realtime_end":"2024-02-03","date":"1932-01-01","value":"895.802"},
{"realtime_start":"2024-02-03","realtime_end":"2024-02-03","date":"1933-01-01","value":"883.847"},
{"realtime_start":"2024-02-03","realtime_end":"2024-02-03","date":"1934-01-01","value":"978.188"},
{"realtime_start":"2024-02-03","realtime_end":"2024-02-03","date":"1935-01-01","value":"1065.716"},
{"realtime_start":"2024-02-03","realtime_end":"2024-02-03","date":"1936-01-01","value":"1201.443"},
{"realtime_start":"2024-02-03","realtime_end":"2024-02-03","date":"1937-01-01","value":"1264.393"},
{"realtime_start":"2024-02-03","realtime_end":"2024-02-03","date":"1938-01-01","value":"1222.966"},
{"realtime_start":"2024-02-03","realtime_end":"2024-02-03","date":"1939-01-01","value":"1320.924"},
{"realtime_start":"2024-02-03","realtime_end":"2024-02-03","date":"1940-01-01","value":"1435.656"},
{"realtime_start":"2024-02-03","realtime_end":"2024-02-03","date":"1941-01-01","value":"1690.844"},
{"realtime_start":"2024-02-03","realtime_end":"2024-02-03","date":"1942-01-01","value":"2008.853"},
{"realtime_start":"2024-02-03","realtime_end":"2024-02-03","date":"1943-01-01","value":"2349.125"},
{"realtime_start":"2024-02-03","realtime_end":"2024-02-03","date":"1944-01-01","value":"2535.744"},
{"realtime_start":"2024-02-03","realtime_end":"2024-02-03","date":"1945-01-01","value":"2509.982"},
{"realtime_start":"2024-02-03","realtime_end":"2024-02-03","date":"1946-01-01","value":"2221.51"},
{"realtime_start":"2024-02-03","realtime_end":"2024-02-03","date":"1947-01-01","value":"2199.313"},
{"realtime_start":"2024-02-03","realtime_end":"2024-02-03","date":"1948-01-01","value":"2291.804"},
{"realtime_start":"2024-02-03","realtime_end":"2024-02-03","date":"1949-01-01","value":"2277.883"},
{"realtime_start":"2024-02-03","realtime_end":"2024-02-03","date":"1950-01-01","value":"2476.097"},
{"realtime_start":"2024-02-03","realtime_end":"2024-02-03","date":"1951-01-01","value":"2677.414"},

24 / 53

What do I need to know?
The base URL: https://api.stlouisfed.org/
The API endpoint (fred/series/observations/)
The parameters:

series_id="GNPCA"
api_key=YOUR_API_KEY
file_type=json

endpoint = "fred/series/observations"
params = list(
 api_key= "YOUR_FRED_KEY", /# Change to your own key
 file_type="json",
 series_id="GNPCA"
)

25 / 53

https://api.stlouisfed.org/

Reading FRED's JSON
fred =
 httr/:GET(
 url = "https://api.stlouisfed.org/", /# Base URL
 path = endpoint, /# The API endpoint
 query = params /# Our parameter list
) %>%
 httr/:content(as="text") %>%
 jsonlite/:fromJSON()

What's in there?

fred

/# $realtime_start
/# [1] "2024-09-26"
/#
/# $realtime_end
/# [1] "2024-09-26"
/#
/# $observation_start
/# [1] "1600-01-01"
/#
/# $observation_end
/# [1] "9999-12-31"

26 / 53

Turn it into data
fred =
 fred %>%
 purrr/:pluck("observations") %>% /# Extract the "$observations" list element
 # .$observations %>% /# I could also have used this
 # magrittr/:extract("observations") %>% /# Or this
 as_tibble() /# Just for nice formatting
fred

/# # A tibble: 95 × 4
/# realtime_start realtime_end date value
/# <chr> <chr> <chr> <chr>
/# 1 2024-09-26 2024-09-26 1929-01-01 1202.659
/# 2 2024-09-26 2024-09-26 1930-01-01 1100.67
/# 3 2024-09-26 2024-09-26 1931-01-01 1029.038
/# 4 2024-09-26 2024-09-26 1932-01-01 895.802
/# 5 2024-09-26 2024-09-26 1933-01-01 883.847
/# 6 2024-09-26 2024-09-26 1934-01-01 978.188
/# 7 2024-09-26 2024-09-26 1935-01-01 1065.716
/# 8 2024-09-26 2024-09-26 1936-01-01 1201.443
/# 9 2024-09-26 2024-09-26 1937-01-01 1264.393
/# 10 2024-09-26 2024-09-26 1938-01-01 1222.966
/# # ℹ 85 more rows

27 / 53

Clean it up a bit and plot it
library(lubridate) /# Already loaded above

fred =
 fred %>%
 mutate(across(realtime_start:date, ymd)) %>% # make all the dates, dates
 mutate(value = as.numeric(value)) # Make the values numeric
head(fred,3)

/# # A tibble: 3 × 4
/# realtime_start realtime_end date value
/# <date> <date> <date> <dbl>
/# 1 2024-09-26 2024-09-26 1929-01-01 1203.
/# 2 2024-09-26 2024-09-26 1930-01-01 1101.
/# 3 2024-09-26 2024-09-26 1931-01-01 1029.

Plot it
ggplot(fred, aes(x=date, y=value)) + # set your ggplot df and aesthetics
 geom_line() + # what geom?
 scale_y_continuous(labels = scales/:comma) + # Make the scale prettier
 labs(
 x="Date", y="2012 USD (Billions)",
 title="US Real Gross National Product", caption="Source: FRED"
)

28 / 53

Plot it

29 / 53

Hide your API Key
In general, you don't want to share your API key with anyone

Instead, you can make it an environment variable either for a single session or permanently

Sys.setenv(FRED_API_KEY_TEST="abcdefghijklmnopqrstuvwxyz0123456789")
FRED_API_KEY_TEST = Sys.getenv("FRED_API_KEY_TEST")
FRED_API_KEY_TEST

/# [1] "abcdefghijklmnopqrstuvwxyz0123456789"

You can also permanently add it to your .Renviron file, by running the edit_r_environ() function
from the usethis package
Then just type in FRED_API_KEY_TEST=abcdefghijklmnopqrstuvwxyz0123456789 , save, and re-read

usethis/:edit_r_environ() # open R environment to edit
readRenviron("~/.Renviron") # read the .Renviron file

Any time you need it, use Sys.getenv("FRED_API_KEY_TEST")

30 / 53

Popular APIs
Many popular APIs are free to use and have a lot of documentation

Sometimes the documentation gets a bit cumbersome though

So kind souls have developed R packages to help you "abstract" these details (Clean Code)

For example, the tidycensus package is a wrapper for the US Census API

You'll use it on your problem set

Others include: fredr , blsAPI , gh , googlesheets4 , googledrive , wikipediR , etc.

Here's a curated list: https://github.com/RomanTsegelskyi/r-api-wrappers

31 / 53

https://github.com/RomanTsegelskyi/r-api-wrappers

Without tidycensus
Sign up for a Census API key
Get API endpoint you want
Define other parameters

Series you want, your "get,:" i.e. B19013_001E is median household income, NAME is the name
of the geography, GEOID is a census identifier
Figure out the types of parameters
Name the groups you want, in Census that is the "for" -- e.g. state, county, etc.
Name the groups you want, in Census that is your "in" -- e.g. Maine, Cumberland County, etc.

params_census /- list("key"=Sys.getenv('CENSUS_API_KEY'), /# Our parameter list
 "get" = "NAME,B19013_001E",
 "for" = "county:*",
 "in" = "state:23")

census =
 httr/:GET(
 url = "https://api.census.gov/", /# Base URL
 path = "data/2017/acs/acs5", /# The API endpoint
 query = params_census,
) %>%
 httr/:content(as="text") %>%
 jsonlite/:fromJSON()

32 / 53

https://api.census.gov/data/key_signup.html
https://www.census.gov/data/developers/data-sets.html

Census API differs from FRED
Hey, wait that output a different structure than FRED did through this point
So you need a different process to turn into a data table!

print(census)

/# [,1] [,2] [,3] [,4]
/# [1,] "NAME" "B19013_001E" "state" "county"
/# [2,] "Oxford County, Maine" "44582" "23" "017"
/# [3,] "Waldo County, Maine" "50162" "23" "027"
/# [4,] "Penobscot County, Maine" "47886" "23" "019"
/# [5,] "Piscataquis County, Maine" "38797" "23" "021"
/# [6,] "Androscoggin County, Maine" "49538" "23" "001"
/# [7,] "Aroostook County, Maine" "39021" "23" "003"
/# [8,] "Washington County, Maine" "40328" "23" "029"
/# [9,] "Cumberland County, Maine" "65702" "23" "005"
/# [10,] "Knox County, Maine" "53117" "23" "013"
/# [11,] "Sagadahoc County, Maine" "60457" "23" "023"
/# [12,] "York County, Maine" "62618" "23" "031"
/# [13,] "Kennebec County, Maine" "50116" "23" "011"
/# [14,] "Franklin County, Maine" "45541" "23" "007"
/# [15,] "Somerset County, Maine" "41549" "23" "025"
/# [16,] "Hancock County, Maine" "51438" "23" "009"
/# [17,] "Lincoln County, Maine" "54041" "23" "015"

33 / 53

For completion janitor package
Oh shoot, I don't have a GEOID (FIPS code) for the counties!

library(tidyverse)
library(janitor)
census %>%
 as_tibble() %>%
 row_to_names(row_number=1)

/# # A tibble: 16 × 4
/# NAME B19013_001E state county
/# <chr> <chr> <chr> <chr>
/# 1 Oxford County, Maine 44582 23 017
/# 2 Waldo County, Maine 50162 23 027
/# 3 Penobscot County, Maine 47886 23 019
/# 4 Piscataquis County, Maine 38797 23 021
/# 5 Androscoggin County, Maine 49538 23 001
/# 6 Aroostook County, Maine 39021 23 003
/# 7 Washington County, Maine 40328 23 029
/# 8 Cumberland County, Maine 65702 23 005
/# 9 Knox County, Maine 53117 23 013
/# 10 Sagadahoc County, Maine 60457 23 023
/# 11 York County, Maine 62618 23 031
/# 12 Kennebec County, Maine 50116 23 011
/# 13 Franklin County, Maine 45541 23 007
/# 14 Somerset County, Maine 41549 23 025
/# 15 Hancock County, Maine 51438 23 009
/# 16 Lincoln County, Maine 54041 23 015 34 / 53

Tidycensus
Tidycensus embraces the abstraction principle of clean code

#library(tidycensus) # Already loaded
census_api_key("YOUR API KEY GOES HERE") # type this once and do not share your key

get_acs(geography = "county",
 state="ME",
 variables = "B19013_001E", # Median household income
 year = 2017,
 show_call = TRUE, # Show the API call
 survey='acs5')

/# # A tibble: 16 × 5
/# GEOID NAME variable estimate moe
/# <chr> <chr> <chr> <dbl> <dbl>
/# 1 23001 Androscoggin County, Maine B19013_001 49538 1293
/# 2 23003 Aroostook County, Maine B19013_001 39021 1177
/# 3 23005 Cumberland County, Maine B19013_001 65702 1115
/# 4 23007 Franklin County, Maine B19013_001 45541 2739
/# 5 23009 Hancock County, Maine B19013_001 51438 1931
/# 6 23011 Kennebec County, Maine B19013_001 50116 1664
/# 7 23013 Knox County, Maine B19013_001 53117 2506
/# 8 23015 Lincoln County, Maine B19013_001 54041 2895
/# 9 23017 Oxford County, Maine B19013_001 44582 1758
/# 10 23019 Penobscot County, Maine B19013_001 47886 1189
/# 11 23021 Piscataquis County, Maine B19013_001 38797 2314
/# 12 23023 Sagadahoc County, Maine B19013_001 60457 2953
13 23025 Somerset County Maine B19013 001 41549 1522

35 / 53

Notes on Tidycensus
You still need to go find a series ID (AI/Census documentation)

Census API docs organized by year and survey:
https://api.census.gov/data/YEAR/SURVEY/SUBSURVEY/variables.html

tidycensus' load_variables(YYYY, "sub-survey") syntax will help you find the variables you
need

show_call=TRUE will show you the API call that was made -- learn by doing

Argument geography=TRUE returns the polygon needed to map these! (Hint hint hint)

tidycensus is a great example of how to abstract the details of an API

36 / 53

https://api.census.gov/data/YEAR/SURVEY/SUBSURVEY/variables.html

Hidden APIs
Sometimes the API endpoint is hidden from view

But you can find it by using the "Inspect" tool in your browser

It will require some detective work!

But if you pull it off, you can get data that no one else has

37 / 53

Server-side scraping
The scripts that “build” the website are not run on our computer, but rather on a host server that
sends down all of the HTML code.

E.g. Wikipedia tables are already populated with all of the information — numbers, dates, etc.
— that we see in our browser.

In other words, the information that we see in our browser has already been processed by the host
server.

You can think of this information being embedded directly in the webpage’s HTML.

So if we can get our hands on the HTML, we can get our hands on the data.
We just have to figure out how to strip off the HTML and get the data into a tidy format.

Webscraping challenges: Finding the correct CSS (or Xpath) “selectors”. Iterating through dynamic
webpages (e.g. “Next page” and “Show More” tabs).

Key concepts: CSS, Xpath, HTML

R package: rvest has a suite of functions to help convert HTML to a tidy format

38 / 53

Underneath Wikipedia

39 / 53

The HTML source
If we can just cut out all the HTML and get the data into a tidy format, we're golden
Better yet, we can use some of the HTML to help us find harvest the data we want

<caption>List of men's Olympic records in athletics
</caption>
<tbody><tr>
<th scope="col" width="12%">Event
</th>
<th class="unsortable" width="5%">Record
</th>
<th scope="col" width="10%">Athlete(s)
</th>
<th scope="col" width="15%">Nation
</th>
<th scope="col" width="10%">Games
</th>
<th scope="col" width="5%">Date
</th>
<th scope="col" class="unsortable" width="3%">Ref(s)
</th></tr>
<tr>
<th scope="row">100
</th>
<td align="right">9.63
</td>
<td><a href="/wiki/Usain_Bolt"
</td>
<td><img alt="" src="</upload.wikimedia.org/wikipe

40 / 53

Selector gadget and rvest
Selector gadget is a Chrome extension that helps you find the CSS selectors you need
It will highlight the elements you want to scrape and give you the CSS selector

You can then use this selector in the html_elements() function to pick out those elements from
the HTML

In R, we can use the rvest package to read into the HTML document into R and then parse the
relevant nodes.

A typical workflow is: read_html(URL) %>% html_elements(CSS_SELECTORS) %>% html_table() .
You might need other functions depending on the content type (e.g. html_text).

41 / 53

https://selectorgadget.com/

Selector gadget gif

42 / 53

Scraping Wikipedia
The hard part is getting the CSS selector. After that the code is pretty simple
You will just need to use some other packages like janitor , dplyr , and tidyr to clean the table
up a bit for use

read_html("http://en.wikipedia.org/wiki/Men%27s_100_metres_world_record_progression") %>%
 html_element("div+ .wikitable :nth-child(1)") %>% /# select table element
 html_table() %>% /# convert to data frame
 head(5)

/# # A tibble: 5 × 5
/# Time Athlete Nationality `Location of races` Date
/# <dbl> <chr> <chr> <chr> <chr>
/# 1 10.8 Luther Cary United States Paris, France July 4, 1891
/# 2 10.8 Cecil Lee United Kingdom Brussels, Belgium September 25, 1892
/# 3 10.8 Étienne De Ré Belgium Brussels, Belgium August 4, 1893
/# 4 10.8 L. Atcherley United Kingdom Frankfurt/Main, Germany April 13, 1895
/# 5 10.8 Harry Beaton United Kingdom Rotterdam, Netherlands August 28, 1895

43 / 53

Stability and CSS scraping
Websites change over time

That can break your scraping code

This makes scraping as much of an "art" as it is a science

44 / 53

Wayback Machine: Internet Archive
If you go to several federal government websites (https://www.usaid.gov/), you'll see a blank page
or a memo that says the page has been taken down.

That data is no longer visible to the public. But you may need it for research

The Wayback Machine is a digital archive of the World Wide Web and other information on the
Internet

It allows users to go "back in time" and see how websites looked in the past
It has archived over 500 billion web pages

Sometimes scraping it is tricky though, so be patient!

There are packages like ArchiveRetriever that help leverage its API

45 / 53

https://www.usaid.gov/
https://archive.org/web/

Wayback Machine with USAID

46 / 53

Ethics of web scrapingEthics of web scraping

Legality of web scraping
All of today is about how to get data off the web

If you can see it in a browser window and work out its structure, you can scrape it

And the legal restrictions are pretty obscure, fuzzy, and ripe for reform

hiQ Labs vs LinkedIn court ruling defended hiQ's right to scrape, then the Supreme Court
vacated the ruling, and the final decision was against HiQ Labs
The Computer Fraud and Abuse Act (CFFA) protects the scraping of publicly available data
Legality gets messy around personal data and intellectual property (for good reason, but
again reform is needed)

48 / 53

Ethics of web scraping
Technically, web scraping just automates what you (or a team of well-compensated RAs) could do
manually

It's just a lot faster and more efficient (no offense)

Webscraping is an integral tool to modern investigative journalism

Sometimes companies hide things in their HTML that they don't want the public to see
Pro Publica has developed a tool called Upton to make it more accessible

So I stand firmly on the pro-scraping side with a few ethical caveats

Just because you can scrape it, doesn’t mean you should
It’s pretty easy to write up a function or program that can overwhelm a host server or
application through the sheer weight of requests
Or, just as likely, the host server has built-in safeguards that will block you in case of a
suspected malicious Denial-of-serve (DoS) attack

49 / 53

https://www.propublica.org/nerds/upton-a-web-scraping-framework

Be nice
Once you get over the initial hurdles, scraping is fairly easy to do (cleaning can be trickier)

There's plenty of digital ink spilled on the ethics of web scraping

The key takeaway is to be nice

If a public API exists, use it instead of scraping
Only take the data that is necessary
Have good reason to take data that is not intentionaly public
Do not repeatedly swarm a server with requests (use Sys.sleep() to space out requests)
Scrape to add value to the data, not to take value from the host server
Properly cite any scraped content and respect the terms of service of the website
Document the steps taken to scrape the data

50 / 53

https://towardsdatascience.com/ethics-in-web-scraping-b96b18136f01

polite package and robots.txt
Sites often have a "robot.txt," which is a file that tells you what you can and cannot scrape

A "web crawler" should be written to start with the robots.txt and then follow the rules

The polite package is a tool to help you be nice

It explicitly checks for permissions and goes to the robots.txt of any site you visit

As you get better at scraping and start trying to scrape at scale, you should use this

51 / 53

Conclusion
Web content can be rendered either 1) server-side or 2) client-side.

Client-side content is often rendered using an API endpoint, which is a URL that you can use to
access the data directly.

APIs are a set of rules/methods that allow one software application to interact with another
they often require an access token
You can use R packages (httr, xml2, jsonlite) to access these endpoints and tidy the data.
Popular APIs have packages in R or other software that streamline access

Server-side content is often rendered using HTML and CSS.

Use the rvest package to read the HTML document into R and then parse the relevant nodes.
A typical workflow is: read_html(URL) %>% html_elements(CSS_SELECTORS) %>% html_table().
You might need other functions depending on the content type (e.g. html_text).

Just because you can scrape something doesn’t mean you should (i.e. ethical and possibly legal
considerations).

Webscraping involves as much art as it does science. Be prepared to do a lot of experimenting and
data cleaning.

52 / 53

Next: Onto scraping and API activities!Next: Onto scraping and API activities!

