
Data Science for Economists
Lecture 4: R language basics

Kyle Coombs
Bates College | EC/DCS 368

https://github.com/big-data-and-economics

Table of contents
1. Prologue

2. RStudio Layout

3. Object-oriented programming in R

1 Items 6 and 7 are less critical to complete today. 6 is helpful to understand, but we can come back to it later as
needed. 7 is just tips on how to refresh your R session without restarting. 2 / 74

ProloguePrologue

Goal
The goal of these slides is to make sure you know how to do basic skills in R

These skills may seem simple, but are a critical foundation for the rest of the course

Not the goal: Fluency

My goal is not that you leave this lecture, or even this course, fluent in R
That's outside the scope of 80 minutes, let alone 12 weeks

4 / 74

While I still have your attention
Guess what? Everything I'm teaching you is summarized in a cheatsheet

Posit, the parent organization of R, hosts loads of cheatsheets

I link to them on the course website

I cannot stress enough how useful these are when trying to figure out how to write code

It will save you time painstakingly searching Google, StackOverflow, scouring help files,
and bickering with ChatGPT/GitHub CoPilot, etc.

5 / 74

https://posit.co/resources/cheatsheets/

IntroductionIntroduction

The RStudio Panes
Console
Environment Pane
Browser Pane
Source Editor

7 / 74

Console
Typically bottom-left
This is where you can type in code and have it run immediately
Or, when you run code from the Source Editor, it will show up here
It will also show any output or errors

8 / 74

Console gif

9 / 74

Console Example
Let's copy/paste some code in there to run

#Generate 500 heads and tails
dat <- sample(c("Heads","Tails"),500,replace=TRUE)
#Calculate the proportion of heads
mean(dat=="Heads")
#This line should give an error - it didn't work!
dat <- sample(c("Heads","Tails"),500,replace=BLUE)
#This line should give a warning
#It did SOMETHING but maybe not what you want
mean(dat)
#This line won't give an error or a warning
#But it's not what we want!
mean(dat=="heads")

10 / 74

What We Get Back
We can see the code that we've run
We can see the output of that code, if any
We can see any errors or warnings (in red). Remember - errors mean it didn't work.
Warnings mean it maybe didn't work.
Just because there's no error or warning doesn't mean it DID work! Always think
carefully
Specific note: Warning: (package name) was built in R version (version number) just
means that your R installation isn't fully updated. Usually not a problem, but you can
update R at R-project.org to make this go away

11 / 74

http://127.0.0.1:4630/R-project.org

Environment Tab
Environment tab shows us all the objects we have in memory
For example, we created the dat object, so we can see that in Environment
It shows us lots of handy information about that object too

(we'll get to that later)
You can erase everything with that little broom button (technically this does
rm(list=ls()))

12 / 74

Browser Pane
Bottom-right
Lots of handy stuff here!
Mostly, the outcome of what you do will be seen here
Plots you make will show up here
Some functions create tables or output that show up in Viewer
Packages tab - avoid for loading, but the update button is nice!

13 / 74

Files Tab
Basic file browser
Handy for opening up files
Can also help you set the working directory:

Go to folder
In menu bar, Session
Set Working Directory
To Files Pane Location

14 / 74

Files tab

15 / 74

Help Tab
This is where help files appear when you ask for them
You can use the search bar here, or

help(plot)
?plot # This is what most people use

In additon to documentation there's:

Vignettes (more detailed documentation), type vignette("packagename")
Demos (interactive examples), type demo("packagename")
Examples (examples of how to use the function), type example("functionname")

Of course, plenty of materials also available across the internet!

And Gen AI can be helpful, but remember it's not always right

16 / 74

Open file into source

17 / 74

Source Pane
You should be working with code FROM THIS PANE, not the console!
Why? Replicability!
Also, COMMENTS! USE THEM! PLEASE! # lets you write a comment.
Switch between tabs like a browser

Aside: Comments in R files are demarcated by # .

Hit Ctrl+Shift+c (Cmd+Shift+c on Macs) in RStudio to (un)comment whole sections of
highlighted code.

In Rmarkdown files, <!--- ---> is the equivalent syntax for comments. NOT # .

Yes, that's confusing. Yes, I expect you to use the syntax correctly.

18 / 74

Running Code from the Source Pane
Select a chunk of code and hit the "Run" button
Click on a line of code and do Ctrl/Cmd-Enter to run just that line and advance to the
next <- Super handy!
Going one line at a time lets you check for errors more easily
Let's try some!

data(mtcars)
mean(mtcars$mpg)
mean(mtcars$wt)
372+565
log(exp(1))
2^9
(1+1)^9

More fun commands and tricks in the appendix

19 / 74

Gif of source pane

20 / 74

Autocomplete
RStudio comes with autocomplete!
Typing in the Source Pane or the Console, it will try to fill in things for you

Command names (shows the syntax of the function too!)
Object names from your environment
Variable names in your data

Let's try redoing the code we just did, typing it out
It also pairs with GitHub CoPilot if you have successfully gotten GitHub Education access

21 / 74

Help
Autocomplete is one way that RStudio tries to help you out
The way that R helps you out is with the documentation
When you start doing anything serious with a computer, like programming, the most
important skills are:

Knowing to read documentation
Knowing to search the internet for help (always!)

22 / 74

help()
You can get the documentation on most R objects using the help() function
help(mean) , for example, will show you:

What the function is
The "syntax" for the function and the order the arguments go in
The available options for the function
Other, related functions, like weighted.mean
Ideally, some examples of proper use

Not just for functions/commands - some data sets will work too! Try help(mtcars)

23 / 74

Packages
R runs on user-contributed packages that contain functions you can use
Packages stored on CRAN can be installed with install.packages('packagename')
Once a package is installed you don't need to install it again (except to update it)
But every time you open R you'll need to load it in again with library(packagename) if
you want to use its functions
Please don't include package installation in your code itself; this will make you re-install
the package every time you run!

If we haven't installed it yet
install.packages('vtable')
library(vtable)
vtable(iris)

24 / 74

Rmarkdown
Go File New File RMarkdown to create a new RMarkdown document1

RMarkdown is a blend of an R file and a markdown file

Markdown is a simple way to format text
R is a programming language
RMarkdown lets you write text and code in the same document

A text document with some basic layout, for example hashtags for sectioning

Include code chunks with three backticks which execute when you Render to PDF, HTML,
MD, etc.

Include code in-line with single backticks and an r

→ →

1 You can also make Quarto documents, which work across languages, but we're sticking with RMarkdown for
now. 25 / 74

Object-oriented programming in RObject-oriented programming in R

Working in R
Everything in R is an object
We can only really do three things in R:

Create objects with <- or =
Send objects through functions to manipulate them
Look at objects

Appendix: More on objects

27 / 74

Objects
Let's create a basic object

a <- 1

We've taken 1 and stored it inside the a object
Now if we just type a by itself, it will show us the 1 we stored inside
This is a numeric object. We could also have 'strings' or logicals: TRUE or FALSE or
factors

28 / 74

Objects
We can manipulate objects

a + 1

[1] 2

"create a new object that takes a (1) and adds 1 to it (1+1=2)
Notice that a itself doesn't change until we reassign it

a

[1] 1

a = a + 1
a

[1] 2

29 / 74

Assignment
Assignment with <- 1

<- is normally read aloud as "gets". You can think of it as a (left-facing) arrow.2

b <- 10 + 5
b

[1] 15

Assignment with =

b = 10 + 10 ## Note that the assigned object *must* be on the left with "=".
b

[1] 20

R purists insist on <- , but just pick one and be consistent

30 / 74

Assignment
Assignment with <- 1

<- is normally read aloud as "gets". You can think of it as a (left-facing) arrow.2

b <- 10 + 5
b

[1] 15

Assignment with =

b = 10 + 10 ## Note that the assigned object *must* be on the left with "=".
b

[1] 20

R purists insist on <- , but just pick one and be consistent

1 The <- is really a < followed by a - . It just looks like one thing b/c of the font I'm using here.

2 An arrow can point in the other direction too (i.e. ->). So, 10 + 5 -> a following code chunk is equivalent,
although used much less frequently.

30 / 74

https://github.com/tonsky/FiraCode

Vectors
A vector is a collection of objects of the same type
While lots of functions create vectors, we can also make them ourselves with c()
(concatenate)

my_vector <- c(1,8,2,4,3)

We can refer to a certain element of a vector with square brackets [] with a single
number or a range start:end

my_vector[3:4]

[1] 2 4

Or using another vector of logicals (TRUE and FALSE) to pick elements (handy when we
get to data!)

my_vector[c(TRUE, FALSE, TRUE, TRUE, FALSE)]

[1] 1 2 4

More on indexing 31 / 74

Data Frames
A data.frame is what we'll be working with most of the time.
It's a collection of vectors of the same length
We can create them ourselves, but often we will read in a file or use data() to get a
data set

df1 = data.frame(x = 1:5, y = 6:10)

data(mtcars)
mtcars

mpg cyl disp hp drat wt qsec vs am gear carb
Mazda RX4 21.0 6 160.0 110 3.90 2.620 16.46 0 1 4 4
Mazda RX4 Wag 21.0 6 160.0 110 3.90 2.875 17.02 0 1 4 4
Datsun 710 22.8 4 108.0 93 3.85 2.320 18.61 1 1 4 1
Hornet 4 Drive 21.4 6 258.0 110 3.08 3.215 19.44 1 0 3 1
Hornet Sportabout 18.7 8 360.0 175 3.15 3.440 17.02 0 0 3 2
Valiant 18.1 6 225.0 105 2.76 3.460 20.22 1 0 3 1
Duster 360 14.3 8 360.0 245 3.21 3.570 15.84 0 0 3 4
Merc 240D 24.4 4 146.7 62 3.69 3.190 20.00 1 0 4 2
Merc 230 22.8 4 140.8 95 3.92 3.150 22.90 1 0 4 2
Merc 280 19.2 6 167.6 123 3.92 3.440 18.30 1 0 4 4
Merc 280C 17.8 6 167.6 123 3.92 3.440 18.90 1 0 4 4
Merc 450SE 16.4 8 275.8 180 3.07 4.070 17.40 0 0 3 3
Merc 450SL 17.3 8 275.8 180 3.07 3.730 17.60 0 0 3 3
M 450SLC 15 2 8 275 8 180 3 07 3 780 18 00 0 0 3 3

32 / 74

Data Frames
We can get a vector back out of the data frame with $ or [[]]

mtcars$cyl[1:5]

[1] 6 6 4 6 8

mtcars[['cyl']][1:5]

[1] 6 6 4 6 8

33 / 74

Data Frames
Which we might want to do to send it to a function like mean that takes a vector!

mean(mtcars$cyl)

[1] 6.1875

34 / 74

Logic
R also comes equipped with a full set of logical operators and Booleans, which follow
standard programming protocol. For example:

1 > 2

[1] FALSE

1 > 2 & 1 > 0.5 ## The "&" stands for "and"

[1] FALSE

1 > 2 | 1 > 0.5 ## The "|" stands for "or" (not a pipe a la the shell)

[1] TRUE

isTRUE (1 < 2)

[1] TRUE

35 / 74

Logic
R also comes equipped with a full set of logical operators and Booleans, which follow
standard programming protocol. For example:

1 > 2

[1] FALSE

1 > 2 & 1 > 0.5 ## The "&" stands for "and"

[1] FALSE

1 > 2 | 1 > 0.5 ## The "|" stands for "or" (not a pipe a la the shell)

[1] TRUE

isTRUE (1 < 2)

[1] TRUE

You can read more about logical operators and types here and here. I also summarise more
in the appendix.

35 / 74

https://stat.ethz.ch/R-manual/R-devel/library/base/html/Logic.html
https://stat.ethz.ch/R-manual/R-devel/library/base/html/logical.html

if/else
The if/else statement is a fundamental building block of programming logic. It allows us to
evaluate a logical statement and then execute a particular command if that statement is
TRUE. For example:

x = 5
if (1>x) {
 print("x is greater than 1")
} else {
 print("x is less than or equal to 1")
}

[1] "x is less than or equal to 1"

R's ifelse collapses this into one line. (Try it yourself.)

ifelse(1>x, "x is greater than 1", "x is less than or equal to 1")

[1] "x is less than or equal to 1"

case_when() in the dplyr package is a more flexible version of ifelse() that can
handle multiple conditions. (It is on the problem set.)

36 / 74

Global environment
Let's go back to the df1 data frame we made

df1

x y
1 1 6
2 2 7
3 3 8
4 4 9
5 5 10

37 / 74

Global environment
Let's go back to the df1 data frame we made

df1

x y
1 1 6
2 2 7
3 3 8
4 4 9
5 5 10

Now, let's try to run a regression1 on these "x" and "y" variables:

lm(y ~ x) ## The "lm" stands for linear model(s)

Error in eval(predvars, data, env): object 'y' not found

1 Yes, this is a dumb regression with perfectly co-linear variables. Just go with it.
37 / 74

Global environment
Let's go back to the df1 data frame we made

df1

x y
1 1 6
2 2 7
3 3 8
4 4 9
5 5 10

Now, let's try to run a regression1 on these "x" and "y" variables:

lm(y ~ x) ## The "lm" stands for linear model(s)

Error in eval(predvars, data, env): object 'y' not found

Uh-oh. What went wrong here? (Answer on next slide.)

1 Yes, this is a dumb regression with perfectly co-linear variables. Just go with it.
37 / 74

Global environment (cont.)
The error message provides the answer to our question:

Error in eval(predvars, data, env): object 'y' not found

38 / 74

Global environment (cont.)
The error message provides the answer to our question:

Error in eval(predvars, data, env): object 'y' not found

R can't find the variables that we've supplied in our Global Environment:

38 / 74

https://www.datamentor.io/r-programming/environment-scope/

Global environment (cont.)
The error message provides the answer to our question:

Error in eval(predvars, data, env): object 'y' not found

R can't find the variables that we've supplied in our Global Environment:

Put differently: We have to tell R that they belong to the object df1 .

Think about how you might do this before clicking through to the next slide.

38 / 74

https://www.datamentor.io/r-programming/environment-scope/

Global environment (cont.)
There are a various ways to solve this problem. One is to simply specify the datasource:

lm(y ~ x, data = df1) ## Works when we add "data = df1"!

Call:
lm(formula = y ~ x, data = df1)

Coefficients:
(Intercept) x
5 1

39 / 74

Global environment (cont.)
There are a various ways to solve this problem. One is to simply specify the datasource:

lm(y ~ x, data = df1) ## Works when we add "data = df1"!

Call:
lm(formula = y ~ x, data = df1)

Coefficients:
(Intercept) x
5 1

I want to emphasize this global environment issue, because it is something that Stata users
(i.e. many economists) struggle with when they first come to R.

In Stata, the entire workspace essentially consists of one (and only one) data frame
meaning no ambiguity where variables are coming from.
That "convenience" has a high price -- literally you need to buy Stata 16 or higher to use
frames to open multiple data frames with less flexibility.
Speaking of which...

39 / 74

Working with multiple objects
R's ability to keep multiple objects in memory at the same time is a huge plus for data work.

E.g. We can copy an existing data frame, or create new one entirely from scratch. Either
will exist happily with our existing objects in the global environment.
Just make sure to give them distinct names and be specific about which objects you are
referring to.
More on names

df2 = data.frame(x = rnorm(10), y = runif(10))

40 / 74

Basics of R
This has been a lot of information!
To really learn it you'll have to get used to applying it yourself
We'll do this for next two weeks

41 / 74

AppendixAppendix

Basic arithmetic
R is a powerful calculator and recognizes all of the standard arithmetic operators:

1+2 ## Addition

[1] 3

6-7 ## Subtraction

[1] -1

5/2 ## Division

[1] 2.5

2^3 ## Exponentiation

[1] 8

2+4*1^3 ## Please Excuse My Dear Aunt Sally (PEMDAS)

[1] 6

43 / 74

Basic arithmetic (cont.)
We can also invoke modulo operators (integer division & remainder).

Very useful when dealing with time, for example.

100 %/% 60 ## How many whole hours in 100 minutes?

[1] 1

100 %% 60 ## How many minutes are left over?

[1] 40

44 / 74

Logic (cont.)

Order of precedence
Is this statement TRUE or FALSE?

1 > 0.5 & 2

45 / 74

Logic (cont.)

Order of precedence
Is this statement TRUE or FALSE?

1 > 0.5 & 2

Logic statements follow a strict order of precedence. Logical operators (> , == , etc) are
evaluated before Boolean operators (& and |). Failure to recognise this can lead to
unexpected behaviour...

45 / 74

Logic (cont.)

Order of precedence
Is this statement TRUE or FALSE?

1 > 0.5 & 2

Logic statements follow a strict order of precedence. Logical operators (> , == , etc) are
evaluated before Boolean operators (& and |). Failure to recognise this can lead to
unexpected behaviour...

What's happening here is that R is evaluating two separate "logical" statements:

1 > 0.5 , which is is obviously TRUE.
2 , which is TRUE(!) because R is "helpfully" converting it to as.logical(2)==TRUE .

45 / 74

Logic (cont.)

Order of precedence
Is this statement TRUE or FALSE?

1 > 0.5 & 2

Logic statements follow a strict order of precedence. Logical operators (> , == , etc) are
evaluated before Boolean operators (& and |). Failure to recognise this can lead to
unexpected behaviour...

What's happening here is that R is evaluating two separate "logical" statements:

1 > 0.5 , which is is obviously TRUE.
2 , which is TRUE(!) because R is "helpfully" converting it to as.logical(2)==TRUE .

Solution: Be explicit about each component of your logic statement(s).

1 > 0.5 & 1 > 2

[1] FALSE

45 / 74

Logic (cont.)

Negation: !
We use ! as a short hand for negation. This will come in very handy when we start filtering
data objects based on non-missing (i.e. non-NA) observations.

is.na(1:10)

[1] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

!is.na(1:10)

[1] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE

Negate(is.na)(1:10) ## This also works. Try it yourself.

46 / 74

Logical operators (cont.)

Value matching: %in%
To see whether an object is contained within (i.e. matches one of) a list of items, use %in% 1 .

4 %in% 1:10

[1] TRUE

4 %in% 5:10

[1] FALSE

1 There's no equivalent "not in" command, but how might we go about creating one? See here. 47 / 74

Logical operators (cont.)

Evaluation
We'll get to assignment shortly. However, to preempt it somewhat, we use two equal signs
for logical evaluation.

1 = 1 ## This doesn't work

Error in 1 = 1: invalid (do_set) left-hand side to assignment

1 == 1 ## This does.

[1] TRUE

1 != 2 ## Note the single equal sign when combined with a negation.

[1] TRUE

48 / 74

Not in
There's no equivalent "not in" command, but how might we go about creating one?

Hint: Think about negation...

49 / 74

Not in
There's no equivalent "not in" command, but how might we go about creating one?

Hint: Think about negation...

`%ni%` = Negate(`%in%`) ## The backticks (`) help to specify functions.
4 %ni% 5:10

[1] TRUE

Back

49 / 74

"Everything is an object""Everything is an object"

Motivation
R is an object-oriented programming (OOP)1 , which is often summarised as:

"Everything is an object and everything has a name."

51 / 74

https://en.wikipedia.org/wiki/Object-oriented_programming

Motivation
R is an object-oriented programming (OOP)1 , which is often summarised as:

"Everything is an object and everything has a name."

In the next two sections, I want to dive into this idea a little more. I also want to preempt
some issues that might trip you up if you new to R or OOP in general.

At least, they were things that tripped me up at the beginning (and still do)

The good news is that avoiding and solving these issues is pretty straightforward.

Not to mention: A very small price to pay for the freedom and control that R offers us.

1 Technically, there are actually multiple OOP frameworks in R (S3, S4, R6). Hadley Wickham's "Advanced R"
provides a very thorough overview of the main ones. Read his book sometime if you're into this stuff, it is
superbly helpful.

51 / 74

https://en.wikipedia.org/wiki/Object-oriented_programming
https://adv-r.hadley.nz/oo.html

What are objects?
It's important to emphasise that there are many different types (or classes) of objects.

We'll revisit the issue of "type" vs "class" in a slide or two. For the moment, it is helpful
simply to name some objects that we'll be working with regularly:

vectors
matrices
data frames
lists
functions
etc.

52 / 74

What are objects?
It's important to emphasise that there are many different types (or classes) of objects.

We'll revisit the issue of "type" vs "class" in a slide or two. For the moment, it is helpful
simply to name some objects that we'll be working with regularly:

vectors
matrices
data frames
lists
functions
etc.

Most likely, you already have a good idea of what distinguishes these objects and how to
use them.

However, there are subtleties that may confuse while you're still getting used to R.
E.g. There are different kinds of data frames. "tibbles" and "data.tables" are enhanced
versions of the standard data frame in R.

52 / 74

https://tibble.tidyverse.org/
https://rdatatable.gitlab.io/data.table/articles/datatable-intro.html#what-is-datatable-1a

Object class, type, and structure
df1 = data.frame(x = 1:2, y = 3:4) ## Create a small data frame called "df1".

Use the class , typeof , and str commands to understand more about a particular object.

class(df1) ## Evaluate its class.

[1] "data.frame"

typeof(df1) ## Evaluate its type.

[1] "list"

str(df1) ## Show its structure.

'data.frame': 2 obs. of 2 variables:
$ x: int 1 2
$ y: int 3 4

53 / 74

Object class, type, and structure
df1 = data.frame(x = 1:2, y = 3:4) ## Create a small data frame called "df1".

Use the class , typeof , and str commands to understand more about a particular object.

class(df1) ## Evaluate its class.

[1] "data.frame"

typeof(df1) ## Evaluate its type.

[1] "list"

str(df1) ## Show its structure.

'data.frame': 2 obs. of 2 variables:
$ x: int 1 2
$ y: int 3 4

PS — Confused why typeof(df1) returns "list"? See here.

PPS — Convert classes with as.[class]() . e.g. as.matrix(df1) makes a matrix.
53 / 74

https://stackoverflow.com/questions/45396538/typeofdata-frame-shows-list-in-r

Object class, type, and structure (cont.)
Of course, you can always just inspect/print an object directly in the console.

E.g. Type df1 and hit Enter.

df1

x y
1 1 3
2 2 4

The View() function is also very helpful. This is the same as clicking on the object in your
RStudio Environment pane. (Try both methods now.)

E.g. View(df1) .

Why is it important to know how to inspect objects?

54 / 74

Object class, type, and structure (cont.)
Of course, you can always just inspect/print an object directly in the console.

E.g. Type df1 and hit Enter.

df1

x y
1 1 3
2 2 4

The View() function is also very helpful. This is the same as clicking on the object in your
RStudio Environment pane. (Try both methods now.)

E.g. View(df1) .

Why is it important to know how to inspect objects?

R is open source and you will often be working with functions that you did not write
which return objects that you are unfamiliar with.

54 / 74

"Everything has a name""Everything has a name"

Reserved words
We've seen that we can assign objects to different names. However, there are a number of
special words that are "reserved" in R.

These are are fundamental commands, operators and relations in base R that you
cannot (re)assign, even if you wanted to.
We already encountered examples with the logical operators.

See here for a full list, including (but not limited to):

if
else
while
function
for
TRUE
FALSE
NULL
Inf
NaN
NA

56 / 74

http://stat.ethz.ch/R-manual/R-devel/library/base/html/Reserved.html

Semi-reserved words
In addition to the list of strictly reserved words, there is a class of words and strings you
might call "semi-reserved".

These are named functions or constants (e.g. pi) that you can re-assign if you really
wanted to... but already come with important meanings from base R.

Arguably the most important semi-reserved character is c() , which we use for
concatenation; i.e. creating vectors and binding different objects together.

my_vector = c(1, 2, 5)
my_vector

[1] 1 2 5

57 / 74

Semi-reserved words
In addition to the list of strictly reserved words, there is a class of words and strings you
might call "semi-reserved".

These are named functions or constants (e.g. pi) that you can re-assign if you really
wanted to... but already come with important meanings from base R.

Arguably the most important semi-reserved character is c() , which we use for
concatenation; i.e. creating vectors and binding different objects together.

my_vector = c(1, 2, 5)
my_vector

[1] 1 2 5

What happens if you type the following? (Try it in your console.)

c = 4
c(1, 2 ,5)

57 / 74

Semi-reserved words (cont.)
(Continued from previous slide.)

In this case, thankfully nothing. R is "smart" enough to distinguish between the variable c =
4 that we created and the built-in function c() that calls for concatenation.

58 / 74

Semi-reserved words (cont.)
(Continued from previous slide.)

In this case, thankfully nothing. R is "smart" enough to distinguish between the variable c =
4 that we created and the built-in function c() that calls for concatenation.

However, this is still extremely sloppy coding. R won't always be able to distinguish between
conflicting definitions. And neither will you. For example:

pi

[1] 3.141593

pi = 2
pi

[1] 2

58 / 74

Semi-reserved words (cont.)
(Continued from previous slide.)

In this case, thankfully nothing. R is "smart" enough to distinguish between the variable c =
4 that we created and the built-in function c() that calls for concatenation.

However, this is still extremely sloppy coding. R won't always be able to distinguish between
conflicting definitions. And neither will you. For example:

pi

[1] 3.141593

pi = 2
pi

[1] 2

Two fixes:

1. rm(pi)
2. Restart your RStudio session

Both a pain Bottom line: Don't use (semi-)reserved characters!
58 / 74

Namespace conflicts
A similar issue crops up when we load two packages, which have functions that share the
same name. E.g. Look what happens we load the dplyr package.

library(dplyr)

59 / 74

Namespace conflicts
A similar issue crops up when we load two packages, which have functions that share the
same name. E.g. Look what happens we load the dplyr package.

library(dplyr)

The messages that you see about some object being masked from 'package:X' are warning
you about a namespace conflict.

E.g. Both dplyr and the stats package (which gets loaded automatically when you
start R) have functions named "filter" and "lag".

59 / 74

Namespace conflicts (cont.)
The potential for namespace conflicts is a result of the OOP approach.1

Also reflects the fundamental open-source nature of R and the use of external
packages. People are free to call their functions whatever they want, so some overlap is
only to be expected.

1 Similar problems arise in virtually every other programming language (Python, C, etc.)
60 / 74

Namespace conflicts (cont.)
The potential for namespace conflicts is a result of the OOP approach.1

Also reflects the fundamental open-source nature of R and the use of external
packages. People are free to call their functions whatever they want, so some overlap is
only to be expected.

Whenever a namespace conflict arises, the most recently loaded package will gain
preference. So the filter() function now refers specifically to the dplyr variant.

But what if we want the stats variant? Well, we have two options:

1. Temporarily use stats::filter()
2. Permanently assign filter = stats::filter

1 Similar problems arise in virtually every other programming language (Python, C, etc.)
60 / 74

Solving namespace conflicts

1. Use package::function()
We can explicitly call a conflicted function from a particular package using the
package::function() syntax. For example:

stats::filter(1:10, rep(1, 2))

Time Series:
Start = 1
End = 10
Frequency = 1
[1] 3 5 7 9 11 13 15 17 19 NA

61 / 74

Solving namespace conflicts

1. Use package::function()
We can explicitly call a conflicted function from a particular package using the
package::function() syntax. For example:

stats::filter(1:10, rep(1, 2))

Time Series:
Start = 1
End = 10
Frequency = 1
[1] 3 5 7 9 11 13 15 17 19 NA

We can also use :: for more than just conflicted cases.

E.g. Being explicit about where a function (or dataset) comes from can help add clarity
to our code. Try these lines of code in your R console.

dplyr::starwars ## Print the starwars data frame from the dplyr package
scales::comma(c(1000, 1000000)) ## Use the comma function, which comes from the scales packa

61 / 74

Solving namespace conflicts (cont.)

2. Assign function = package::function
A more permanent solution is to assign a conflicted function name to a particular package.
This will hold for the remainder of your current R session, or until you change it back. E.g.

filter = stats::filter ## Note the lack of parentheses.
filter = dplyr::filter ## Change it back again.

62 / 74

Solving namespace conflicts (cont.)

2. Assign function = package::function
A more permanent solution is to assign a conflicted function name to a particular package.
This will hold for the remainder of your current R session, or until you change it back. E.g.

filter = stats::filter ## Note the lack of parentheses.
filter = dplyr::filter ## Change it back again.

General advice
I would generally advocate for the temporary package::function() solution.

Another good rule of thumb is that you want to load your most important packages last. (E.g.
Load the tidyverse after you've already loaded any other packages.)

Other than that, simply pay attention to any warnings when loading a new package and ? is
your friend if you're ever unsure. (E.g. ?filter will tell you which variant is being used.)

In truth, problematic namespace conflicts are rare. But it's good to be aware of them.

62 / 74

User-side namespace conflicts
A final thing to say about namespace conflicts is that they don't only arise from loading
packages. They can arise when users create their own functions with a conflicting name.

E.g. If I was naive enough to create a new function called c() .

63 / 74

User-side namespace conflicts
A final thing to say about namespace conflicts is that they don't only arise from loading
packages. They can arise when users create their own functions with a conflicting name.

E.g. If I was naive enough to create a new function called c() .

In a similar vein, one of the most common and confusing errors that even experienced R
programmers run into is related to the habit of calling objects "df" or "data"... both of which
are functions in base R!1

See for yourself by typing ?df or ?data .

Again, R will figure out what you mean if you are clear/lucky enough. But, much the same as
with c() , it's relatively easy to run into problems.

Case in point: Triggering the infamous "object of type closure is not subsettable" error
message. (See from 1:45 here.)

1 Guess who has two thumbs and keeps making this mistake? This guy. 63 / 74

https://rstudio.com/resources/rstudioconf-2020/object-of-type-closure-is-not-subsettable/

IndexingIndexing

Option 1: []
We've already seen an example of indexing in the form of R console output. For example:

1+2

[1] 3

The [1] above denotes the first (and, in this case, only) element of our output.1 In this case,
a vector of length one equal to the value "3".

65 / 74

Option 1: []
We've already seen an example of indexing in the form of R console output. For example:

1+2

[1] 3

The [1] above denotes the first (and, in this case, only) element of our output.1 In this case,
a vector of length one equal to the value "3".

Try the following in your console to see a more explicit example of indexed output:

rnorm(n = 100, mean = 0, sd = 1)
rnorm(100) ## Would work just as well. (Why? Hint: see ?rnorm)

[1] Indexing in R begins at 1. Not 0 like some languages (e.g. Python, JavaScript, or my problem sets).
65 / 74

Option 1: [] (cont.)
More importantly, we can also use [] to index objects that we create in R.

a = 1:10
a[4] ## Get the 4th element of object "a"

[1] 4

a[c(4, 6)] ## Get the 4th and 6th elements

[1] 4 6

It also works on larger arrays (vectors, matrices, data frames, and lists). For example:

df1[1, 1] ## Show the cell corresponding to the 1st row & 1st column of the data frame.

[1] 1

66 / 74

Option 1: [] (cont.)
More importantly, we can also use [] to index objects that we create in R.

a = 1:10
a[4] ## Get the 4th element of object "a"

[1] 4

a[c(4, 6)] ## Get the 4th and 6th elements

[1] 4 6

It also works on larger arrays (vectors, matrices, data frames, and lists). For example:

df1[1, 1] ## Show the cell corresponding to the 1st row & 1st column of the data frame.

[1] 1

What does df2[1:3, 1] give you?

66 / 74

Option 1: [] (cont.)
We haven't covered them yet, but lists are a more complex type of array object in R.

They can contain an assortment of objects that don't share the same class, or have the
same shape (e.g. rank) or common structure.
E.g. A list can contain a scalar, a string, and a data frame. Or you can have a list of data
frames, or even lists of lists.

67 / 74

Option 1: [] (cont.)
We haven't covered them yet, but lists are a more complex type of array object in R.

They can contain an assortment of objects that don't share the same class, or have the
same shape (e.g. rank) or common structure.
E.g. A list can contain a scalar, a string, and a data frame. Or you can have a list of data
frames, or even lists of lists.

The relevance to indexing is that lists require two square brackets [[]] to index the parent
list item and then the standard [] within that parent item. An example might help to
illustrate:

my_list = list(a = "hello", b = c(1,2,3), c = data.frame(x = 1:5, y = 6:10))
my_list[[1]] ## Return the 1st list object

[1] "hello"

my_list[[2]][3] ## Return the 3rd element of the 2nd list object

[1] 3

67 / 74

Option 2: $
Lists provide a nice segue to our other indexing operator: $.

Let's continue with the my_list example from the previous slide.

my_list

$a
[1] "hello"

$b
[1] 1 2 3

$c
x y
1 1 6
2 2 7
3 3 8
4 4 9
5 5 10

68 / 74

Option 2: $
Lists provide a nice segue to our other indexing operator: $.

Let's continue with the my_list example from the previous slide.

my_list

$a
[1] "hello"

$b
[1] 1 2 3

Notice how our (named) parent list objects are demarcated: "$a", "$b" and "$c".

68 / 74

Option 2: $ (cont.)
We can call these objects directly by name using the dollar sign, e.g.

my_list$a ## Return list object "a"

[1] "hello"

my_list$b[3] ## Return the 3rd element of list object "b"

[1] 3

my_listcx ## Return column "x" of list object "c"

[1] 1 2 3 4 5

69 / 74

Option 2: $ (cont.)
We can call these objects directly by name using the dollar sign, e.g.

my_list$a ## Return list object "a"

[1] "hello"

my_list$b[3] ## Return the 3rd element of list object "b"

[1] 3

my_listcx ## Return column "x" of list object "c"

[1] 1 2 3 4 5

Aside: Typing View(my_list) (or, equivalently, clicking on the object in RStudio's
environment pane) provides a nice interactive window for exploring the nested structure of
lists.

69 / 74

Option 2: $ (cont.)
The $ form of indexing also works (and in the manner that you probably expect) for other
object types in R, like data.frame s.

In some cases, you can also combine the two index options.

E.g. Get the 1st element of the "name" column from the our data frame.

df2$x[1]

[1] 0.05956091

70 / 74

Option 2: $ (cont.)
The $ form of indexing also works (and in the manner that you probably expect) for other
object types in R, like data.frame s.

In some cases, you can also combine the two index options.

E.g. Get the 1st element of the "name" column from the our data frame.

df2$x[1]

[1] 0.05956091

However, note some key differences between the output from this example and that of our
previous df2[1, 1] example. What are they?

Hint: Apart from the visual cues, try wrapping each command in str() .

70 / 74

Option 2: $ (cont.)
The last thing that I want to say about $ is that it provides another way to avoid the "object
not found" problem that we ran into with our earlier regression example.

lm(y ~ x) ## Doesn't work

Error in eval(predvars, data, env): object 'y' not found

lm(df1$y ~ df1$x) ## Works!

Call:
lm(formula = df1$y ~ df1$x)

Coefficients:
(Intercept) df1$x
2 1

71 / 74

Cleaning upCleaning up

Removing objects (and packages)
Use rm() to remove an object or objects from your working environment.

a = "hello"
b = "world"
rm(a, b)

You can also use rm(list = ls()) to remove all objects in your working environment
(except packages), but this is frowned upon.

Better just to start a new R session.

73 / 74

https://www.tidyverse.org/articles/2017/12/workflow-vs-script/

Removing objects (and packages)
Use rm() to remove an object or objects from your working environment.

a = "hello"
b = "world"
rm(a, b)

You can also use rm(list = ls()) to remove all objects in your working environment
(except packages), but this is frowned upon.

Better just to start a new R session.

Detaching packages is more complicated, because there are so many cross-dependencies
(i.e. one package depends on, and might even automatically load, another.) However, you can
try, e.g. detach(package:dplyr)

Again, better just to restart your R session.

73 / 74

https://www.tidyverse.org/articles/2017/12/workflow-vs-script/

Removing plots
You can use dev.off() to removing any (i.e. all) plots that have been generated during your
session. For example, try this in your R console:

plot(1:10)
dev.off()

74 / 74

Removing plots
You can use dev.off() to removing any (i.e. all) plots that have been generated during your
session. For example, try this in your R console:

plot(1:10)
dev.off()

You may also have noticed that RStudio has convenient buttons for clearing your workspace
environment and removing (individual) plots. Just look for these icons in the relevant
window panels:

74 / 74

